Ann, Q. & Adams, J. 1992. Structure determination of ceramides and neutral glycosphingolipids by collisional activation of [M + Li]
+ ions. J. Am. Soc. Mass Spectrom. 3:260–263.
doi.org/10.1016/1044-0305(92)87010-V
Couto, D., Melo, T., Conde, T. A., et al. 2022. Food grade extraction of
Chlorella vulgaris polar lipids: a comparative lipidomic study. Food Chem. 375:131685.
doi.org/10.1016/j.foodchem.2021.131685
Ezzedine, J. A., Uwizeye, C., Si Larbi, G., et al. 2023. Adaptive traits of cysts of the snow alga
Sanguina nivaloides unveiled by 3D subcellular imaging. Nat. Commun. 14:7500.
doi.org/10.1038/s41467-023-43030-7
Hölzl, G. & Dörmann, P. 2007. Structure and function of glycoglycerolipids in plants and bacteria. Prog. Lipid Res. 46:225–243, PMID:
10.1016/j.plipres.2007.05.001.
Jüppner, J., Mubeen, U., Leisse, A., et al. 2017. Dynamics of lipids and metabolites during the cell cycle of
Chlamydomonas reinhardtii. Plant J. 92:331–343.
doi.org/10.1111/tpj.13642
Kato, Y., Inabe, K., Hidese, R., Kondo, A. & Hasunuma, T. 2022. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: a review. Bioresour. Technol. 344:126196.
doi.org/10.1016/j.biortech.2021.126196
Li, Y., Lou, Y., Mu, T., et al. 2017. Sphingolipids in marine microalgae: development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla. Anal. Chim. Acta. 986:82–94.
doi.org/10.1016/j.aca.2017.07.039
Lu, N., Wei, D., Chen, F. & Yang, S.-T. 2012. Lipidomic profiling and discovery of lipid biomarkers in snow alga
Chlamydomonas nivalis under salt stress. Eur. J. Lipid Sci. Technol. 114:253–265.
doi.org/10.1002/ejlt.201100248
Lu, N., Wei, D., Chen, F. & Yang, S.-T. 2013. Lipidomic profiling reveals lipid regulation in the snow alga
Chlamydomonas nivalis in response to nitrate or phosphate deprivation. Process Biochem. 48:605–613.
https://doi.org/10.1016/j.procbio.2013.02.028
Markham, J. E. & Jaworski, J. G. 2007. Rapid measurement of sphingolipids from
Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21:1304–1314.
doi.org/10.1002/rcm.2962
Palyzová, A., Cajthaml, T. & Řezanka, T. 2021. Separation of regioisomers and enantiomers of triacylglycerols containing branched fatty acids (iso and/or anteiso). Electrophoresis. 42:1832–1843.
doi.org/10.1002/elps.202000320
Procházková, L., Leya, T., Křížková, H. & Nedbalová, L. 2019a.
Sanguina nivaloides and
Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 95:fiz064.
doi.org/10.1093/femsec/fiz064
Procházková, L., Remias, D., Řezanka, T. & Nedbalová, L. 2019b. Ecophysiology of
Chloromonas hindakii sp. nov. (Chlorophyceae), causing orange snow blooms at different light conditions. Microorganisms. 7:434.
doi.org/10.3390/microorganisms7100434
Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. 2021. Unicellular versus filamentous: the glacial alga
Ancylonema alaskana comb. et stat. nov. and its ecophysiological relatedness to
Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms. 9:1103.
doi.org/10.3390/microorganisms9051103
Remias, D. 2012. Cell structure and physiology of alpine snow and ice algae. In : Lütz C., editor
Plants in Alpine Regions. Springer, Vienna, 175–185.
doi.org/10.1007/978-3-7091-0136-0_13
Řezanka, T., Nedbalová, L., Procházková, L. & Sigler, K. 2014. Lipidomic profiling of snow algae by ESI-MS and silver-LC/APCI-MS. Phytochemistry. 100:34–42.
doi.org/10.1016/j.phytochem.2014.01.017
Řezanka, T., Nedbalová, L. & Sigler, K. 2008. Unusual medium-chain polyunsaturated fatty acids from the snow alga
Chloromonas brevispina. Microbiol. Res. 163:373–379.
doi.org/10.1016/j.micres.2006.11.021
Shiva, S., Enninful, R., Roth, M. R., Tamura, P., Jagadish, K. & Welti, R. 2018. An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods. 14:14.
doi.org/10.1186/s13007-018-0282-y
Tietel, Z., Wikoff, W. R., Kind, T., Ma, Y. & Fiehn, O. 2020. Hyperosmotic stress in
Chlamydomonas induces metabolomic changes in biosynthesis of complex lipids. Eur. J. Phycol. 55:11–29.
doi.org/10.1080/09670262.2019.1637547
Vítová, M., Čížková, M., Náhlík, V. & Řezanka, T. 2022. Changes in glycosyl inositol phosphoceramides during the cell cycle of the red alga
Galdieria sulphuraria. Phytochemistry. 194:113025.
doi.org/10.1016/j.phytochem.2021.113025
Yang, D., Fan, X., Kind, T., Fiehn, O. & Guo, R. 2013. Analysis of polar lipids in
Chlamydomonas reinhardtii using nanoelectrospray direct infusion method and gas chromatography and mass spectrometric detection. Acta Chim. Sin. 71:663–669.
doi.org/10.6023/A13010152
Zhang, Z., Qu, C., Zhang, K., et al. 2020. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr. Biol. 30:3330–3341.
doi.org/10.1016/j.cub.2020.06.029