Andersen, RJ, Wolfe, MS & Faulkner, DJ 1974. Autotoxic antibiotic production by a marine
Chromobacterium. Mar Biol. 27:281–285.
Azam, F, Fenchel, T, Field, JG, Gray, JS, Meyer-Reil, LA & Thingstad, F 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 10:257–263.
Boenigk, J & Novarino, G 2004. Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat Microb Ecol. 34:181–192.
Carver, CE, Mallet, AL, Warnock, R & Douglas, D 1996. Red-colored digestive glands in cultured mussels and scallops: the implication of Mesodinium rubrum. J Shellfish Res. 15:191–201.
Cole, JJ, Findlay, S & Pace, ML 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser. 43:1–10.
Epstein, SS 1997. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb Ecol. 34:188–198.
Fenchel, T 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser. 9:35–42.
Frost, BW 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod
Calanus pacificus. Limnol Oceanogr. 17:805–815.
Hansen, PJ, Moldrup, M, Tarangkoon, W, Garcia-Cuetos, L & Moestrup, Ø 2012. Direct evidence for symbiont sequestration in the marine red tide ciliate
Mesodinium rubrum. Aquat Microb Ecol. 66:63–75.
Heinbokel, JF 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar Biol. 47:177–189.
Jeong, HJ, Seong, KA, Yoo, YD, Kim, TH, Kang, NS, Kim, S, Park, JY, Kim, JS, Kim, GH & Song, JY 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J Eukaryot Microbiol. 55:271–288.
Jimenez, R & Intrigo, P 1987. Observation blooms of Mesodinium rubrum in the upwelling area of Ecuador. Oceanologica Acta, Supplementum 1987. Proceedings of International Symposium on Equatorial Vertical Motion. Gauthier-Villars, Paris, 145–154.
Kat, M 1984. “Red” oysters (
Ostrea edulis L.) caused by
Mesodinium rubrum in Lake Grevelingen”. Aquaculture. 38:375–377.
Kim, GH, Han, JH, Kim, B, Han, JW, Nam, SW, Shin, W, Park, JW & Yih, W 2016. Cryptophyte gene regulation in the kleptoplastidic, karyokleptic ciliate
Mesodinium rubrum. Harmful Algae. 52:23–33.
Lee, KH, Jeong, HJ, Yoon, EY, Jang, SH, Kim, HS & Yih, W 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate
Mesodinium rubrum. Algae. 29:153–163.
Lee, S & Fuhrman, JA 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol. 53:1298–1303.
Lee, SH 1993. Measurement of carbon and nitrogen biomass and biovolume from naturally derived marine bacterioplankton. In : Kemp PF, Sherr BF, Sherr EB, Cole JJ, editors Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, 319–325.
Lindholm, T 1985. Mesodinium rubrum: a unique photosynthetic ciliate. Adv Aquat Microbiol. 3:1–48.
Lohmann, H 1908. Untersuchung zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wiss Meeresunters Kiel. 10:129–370.
Myung, G, Kim, HS, Jang, KG, Park, JW & Yih, W 2007. Importance of the mixotrophic ciliate Myrionecta rubra in marine ecosystems. The Sea J Korean Soc Oceanogr. 12:178–185, (in Korean).
Myung, G, Yih, W, Kim, HS, Park, JS & Cho, BC 2006. Ingestion of bacterial cells by the marine photosynthetic ciliate
Myrionecta rubra. Aquat Microb Ecol. 44:175–180.
Norland, S 1993. The relationship between biomass and volume of bacteria. In : Kemp PF, Sherr BF, Sherr EB, Cole JJ, editors Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, 303–307.
Packard, TT, Blasco, D & Barber, RT 1978.
Mesodinium rubrum in the Baja California upwelling system. In : Boje R, Tomczak M, editors
Upwelling Ecosystems. Springer Verlag, Berlin, 73–89.
Porter, KG & Feig, YS 1980. The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol Oceanogr. 25:943–948.
Porter, KG, Sherr, EB, Sherr, BF, Pace, M & Sanders, RW 1985. Protozoa in planktonic food webs. J Protozool. 32:409–415.
Posch, T, Šimek, K, Vrba, J, Pernthaler, J, Nedoma, J, Sattler, B, Sonntag, B & Psenner, R 1999. Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community. Aquat Microb Ecol. 18:235–246.
Seong, KA, Jeong, HJ, Kim, S, Kim, GH & Kang, JH 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar Ecol Prog Ser. 322:85–97.
Sherr, BF, Sherr, EB & Fallon, RD 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 53:958–965.
Sherr, E & Sherr, B 1988. Role of microbes in pelagic food webs: a revised concept. Limnol Oceanogr. 33:1225–1227.
Simon, M & Azam, F 1989. Protein content and proteins synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser. 51:201–213.
Smith, WO Jr & Barber, RT 1979. A carbon budget for the autotrophic ciliate
Mesodinium rubrum. J Phycol. 15:27–33.
Taylor, FJR, Blackbourn, DJ & Blackbourn, J 1971. The red-water ciliate
Mesodinium rubrum and its “incomplete symbionts”; a review including new ultrastructural observations. J Fish Res Board Can. 28:391–407.
Welch, PS 1948. Limnological methods. Blaikston Co., Philadelphia, PA, 381 pp.
Yih, W, Kim, HS, Jeong, HJ, Myung, G & Kim, YG 2004. Ingestion of cryptophyte cells by the marine photosynthetic ciliate
Mesodinium rubrum. Aqut Microb Ecol. 36:165–170.
Yih, W, Kim, HS, Myung, G, Park, JW, Yoo, YD & Jeong, HJ 2013. The red-tide ciliate
Mesodinium rubrum in Korean coastal waters. Harmful Algae. 30(Suppl 1):S53–S61.
Yoo, YD, Seong, KA, Myung, G, Kim, HS, Jeong, HJ, Palenik, B & Yih, W 2015. Ingestion of the unicellular cyanobacterium
Synechococcus by the mixotrophic red tide ciliate
Mesodinium rubrum. Algae. 30:281–290.