Algae. 2004; 19(2): 129-137.
Development of Indicator for Coastal and Estuarine Eutrophication Using Morphological Characteristics and Tissue N Content of Eelgrass, Zostera marina
Kun-Seop Lee
Deparment of Diology, Pusan National University
Since cultural eutrophication has the detrimental effects on estuarine and coastal ecosystems, recognition of early stage of nutrient over-enrichment is critical for effective managements of the ecosystems. Since released nutrients into coastal ecosystems are diluted and dissipated through tidal action and rapid uptakes by marine plants, monitoring of in situ nutrient concentrations may not be useful for detecting early eutrophication on coastal and estuarine ecosystems. To develop an effective indicator of cultural eutrophication using marine plants, tissue N content and area normalized leaf mass of eelgrass, Zostera marina were examined in Kosung Bay and Koje Bay on the south coast of Korea from June 2001 to April 2003. Eelgrass tissue N content exhibited obvious seasonal variations. Leaf N content was highest during winter and early spring and lowest during summer. Eelgrass tissue N content was higher at Kosung Bay site, which has higher sediment organic content, than at Koje Bay site. Area normalized leaf mass showed reverse trend of leaf N content, and consequently, eelgrass leaf N content and leaf mass exhibited strong negative correlation at both study sites. The results of the present study suggested that the ratio of eelgrass leaf N content to area normalized leaf mass can be applied to assess environmental nitrogen conditions on the coastal and estuarine ecosystems.
Keywords : Area normalized leaf mass; Coastal eutrophication; Eelgrass; Indicator; N content; Zostera marina